2025
Regioselective photodimerization as a tool for light-regulated catalyst assembly
Marchetti, T.; Rastrelli, F.; Lin, M.; Negri, A.; Bonacchi, S.; Prins, L.J.; Gabrielli, L. Chem. Sci., 2025, 16, 17820 – 17826. https://doi.org/10.1039/D5SC03858H
An information ratchet improves selectivity in molecular recognition under non-equilibrium conditions
Roberts, B.M.W.; Del Grosso, E.; Penocchio, E.; Ricci, F.; Prins, L.J. Nat. Nanotechnol., 2025, 20, 1449 – 1456. https://doi.org/10.1038/s41565-025-01982-5
Transient transition from stable to dissipative assemblies in response to the spatiotemporal availability of a chemical fuel
Kar, H.; Chen, R.; Das, K.; Prins, L.J. Angew. Chem. Int. Ed., 2025, 64, e202414495. https://doi.org/10.1002/anie.202414495
2024
Local self-assembly of dissipative structures sustained by substrate diffusion
Kar, H.; Goldin, L.; Frezzato, D.; Prins, L.J. Angew. Chem. Int. Ed., 2024, 63, e202404583. https://doi.org/10.1002/anie.202404583
A minimalistic covalent bond-forming chemical reaction cycle that consumes adenosine phosphate
Marchetti, T.; Roberts, B.M.W.; Frezzato, D.; Prins, L.J. Angew. Chem. Int. Ed., 2024, 63, e202402965. https://doi.org/10.1002/anie.202402965
Chemical information processing using a responsive chemical system
Gabrielli, L.; Goldin, L.; Chandrabhas, S.; Dalla Valle, A.; Prins, L.J. J. Am. Chem. Soc., 2024, 146, 2080-2088. https://doi.org/10.1021/jacs.3c11414
2023
ATP drives the formation of a catalytic hydrazone through an energy ratchet mechanism
Marchetti, T.; Frezzato, D.; Gabrielli, L.; Prins, L.J. Angew. Chem. Int. Ed., 2023, 62, e202307530. http://doi.org/10.1002/anie.202307530
Autonomous and programmable reorganization of DNA-based polymers using redox chemistry
Gentile, S.; Del Grosso, E.; Prins, L.J.; Ricci, F. Chem. Eur. J. , 2023, 29, e202300394. doi.org/10.1002/chem.202300394
Exploiting multivalency and cooperativity of gold nanoparticles for binding phosphatidylinositol(3,4,5)-triphosphate at sub-nanomolar concentrations
Della Sala, F.; Ceresara, E.; Micheli, F.; Fontana, S.; Prins, L.J.; Scrimin, P. Org. Biomol. Chem., 2023, 21, 743-747. doi.org/10.1021/jacs.2c09343
Formation of catalytic hotspots in ATP-templated assemblies
Das, K.; Kar, H.; Chen, R.; Fortunati, I.; Ferrante, C.; Scrimin, P.; Gabrielli, L.; Prins, L.J. J. Am. Chem. Soc., 2023, 145, 898-904. doi.org/10.1039/d2ob02088b
Persistent ATP-concentration gradients in a hydrogel sustained by chemical fuel consumption
Cao, Y.-J.; Gabrielli, L.; Frezzato, D.; Prins, L.J. Angew. Chem. Int. Ed., 2023, 62, e202215421. doi.org/10.1002/anie.202215421
2022
Dissipative control over the toehold-mediated DNA strand displacement reaction
Del Grosso, E.; Irmisch, P.; Gentile, S.; Prins, L.J.; Seidel, R.; Ricci, F. Angew. Chem. Int. Ed., 2022, 61, e202201929. http://doi.org/10.1002/anie.202201929
Dissipative DNA nanotechnology
Del Grosso, E.; Franco, E.; Prins, L.J.; Ricci, F. Nat. Chem., 2022, 14, 600-613. https://doi.org/10.1038/s41557-022-00957-6
Progressive local accumulation of self-assembled nanoreactors in a hydrogel matrix through repetitive injections of ATP
Chen, R.; Das, K.; Cardona, M.A.; Gabrielli, L.; Prins, L.J. J. Am. Chem. Soc., 2022, 144, 2010-2018. https://doi.org/10.1021/jacs.1c13504
2021
Spontaneous reorganization of DNA-based polymers in higher ordered structures fueled by RNA
Gentile, S.; Del Grosso, E.; Pungchai, P.E.; Franco, E.; Prins, L.J.; Ricci, F. J. Am. Chem. Soc., 2021, 143, 20296-20301. https://doi.org/10.1021/jacs.1c09503
Self-assembled multivalent Ag-SR coordination polymers with phosphatase-like activity
Cao, Y.-J.; Yao, M.-X.; Prins, L.J.; Ji, R.-X.; Liu, N.; Sun, X.-Y.; Jiang, Y.-B.; Shen, J.-S. Chem. Eur. J., 2021, 27, 7646-7650. https://doi.org/10.1002/chem.202100368
Reorganization of self-assembled DNA-based polymers using orthogonally addressable building blocks
Gentile, S.; Del Grosso, E.; Prins, L.J.; Ricci, F. Angew. Chem. Int. Ed., 2021, 60, 12911-12917. https://doi.org/10.1002/anie.202101378
Chemically-fueled self-assembly in biology and chemistry
Das, K.; Gabrielli, L.; Prins, L.J. Angew. Chem. Int. Ed., 2021, 60, 20120 – 20143. https://doi.org/10.1002/anie.202100274
2020
Nucleotide-selective tenplated self-assembly of nanoreactors under dissipative conditions
Chandrabhas, S.; Maiti, S.; Fortunati, I.; Ferrante, C.; Gabrielli, L.; Prins, L.J. Angew. Chem. Int. Ed., 2020, 59, 22223-22229. https://doi.org/10.1002/anie.202010199
Time-gated fluorescence signalling under dissipative conditions
Cardona, M.A.; Chen, R.; Maiti, S.; Fortunati, I.; Ferrante, C.; Gabrielli, L.; Das, K.; Prins, L.J. Chem. Commun., 2020, 56, 13979-13982. https://doi.org/10.1039/d0cc05993e
Disulfide-linked allosteric modulators for multicycle kinetic control of DNA-based nanodevices
Del Grosso, E.; Ponzo, I.; Ragazzon, G.; Prins, L.J.; Ricci, F. Angew. Chem. Int. Ed., 2020, 59, 21058-21063. https://doi.org/10.1002/anie.202008007
Enhanced catalytic activity under non-equilibrium conditions
Chen, R.; Neri, S.; Prins, L.J. Nat. Nanotechnol., 2020, 15, 868-875. https://doi.org/10.1038/s41565-020-0734-1
Hydrolytic nanozymes
Gabrielli, L.; Prins, L.J.; Rastrelli, F.; Mancin, F.; Scrimin, P. Eur. J. Org. Chem., 2020, 5044-5055. https://doi.org/10.1002/ejoc.202000356
Transient DNA-based nanostructures controlled by redox inputs
Del Grosso, E.; Prins, L.J.; Ricci, F. Angew. Chem. Int. Ed., 2020, 59, 13238-13245. https://doi.org/10.1002/anie.202002180
Template-dependent (ir)reversibility of noncovalent synthesis pathways
Chandrabhas, S.; Olivo, M.; Prins, L.J. ChemSystemsChem, 2020, 2, e1900063. https://doi.org/10.1002/syst.201900063
ATP-fuelled self-assembly to regulate chemical reactivity in the time domain
Cardona, M.A.; Prins, L.J. Chem. Sci., 2020, 11, 1518-1522. https://doi.org/10.1039/c9sc05188k
2019
Fuel-responsive allosteric DNA-based aptamers for the transient release of ATP and cocaine
Del Grosso, E.; Ragazzon, G.; Prins, L.J.; Ricci, F. Angew. Chem. Int. Ed., 2019, 58, 5582-5586. https://doi.org/10.1002/anie.201812885
2018
Energy consumption in chemical fuel-driven self-assembly
Ragazzon, G.; Prins, L.J. Nat. Nanotechnol., 2018, 13, 882-889. https://doi.org/10.1038/s41565-018-0250-8
Substrate-induced self-assembly of cooperative catalysts
Solís Muñana, P.; Ragazzon, G.; Dupont, J.; Ren, C. Z.-J.; Prins, L.J.; Chen, J. L.-Y. Angew. Chem. Int. Ed., 2018, 57, 16469-16474. https://doi.org/10.1002/anie.201810891
Distance between metal centres affects catalytic efficiency of dinuclear Co(III) complexes in the hydrolysis of a phosphate diester
Bencze, E. S.; Zonta, C.; Mancin, F.; Prins, L.J.; Eur. J. Org. Chem., 2018, 5375-5381. https://doi.org/10.1002/ejoc.201800300
Stepwise hierarchical self-assembly of supramolecular amphiphiles into higher-order three-dimensional nanostructures
Della Sala, F.; Verbeet, W.; Silvestrini, S.; Fortunati, I.; Ferrante, C.; Prins, L.J. ChemNanoMat, 2018, 4, 821-830. https://doi.org/10.1002/cnma.201800097
2017
Temporal control over transient chemical systems using structurally diverse chemical fuels
Chen, J. L.-Y.; Maiti, S.; Fortunati, I.; Ferrante, C.; Prins, L.J. Chem. Eur. J., 2017, 23, 11549-11559. https://doi.org/10.1002/chem.201701533
A modular self-assembled sensing system for heavy metals with tunable sensitivity and selectivity
Maiti, S.; Prins, L.J. Tetrahedron, 2017, 73, 4950-4954. https://doi.org/10.1016/j.tet.2017.05.028
Photoswitchable catalysis by a nanozyme mediated by a light-sensitive cofactor
Neri, S.; Garcia Martin, S.; Pezzato, C.; Prins, L.J. J. Am. Chem. Soc., 2017, 139, 1794-1797. https://doi.org/10.1021/jacs.6b12932
Transient self-assembly of molecular nanostructures driven by chemical fuels
Della Sala, F.; Neri, S.; Maiti, S.; Chen, J. L.-Y.; Prins, L.J. Curr. Opin. Biotechnol., 2017, 46, 27-33. https://doi.org/10.1016/j.copbio.2016.10.014
2016
Hydrolytic metallo-nanozymes: from micelles and vesicles to gold nanoparticles
Mancin, F.; Prins, L.J.; Pengo, P.; Pasquato, L.; Tecilla, P.; Scrimin, P. Molecules, 2016, 21, 1014. https://doi.org/10.3390/molecules21081014
Reversible electrochemical modulation of a catalytic nanosystem
Della Sala, F.; Chen, J. L.-Y.; Ranallo, S.; Badocco, D.; Pastore, P.; Ricci, F.; Prins, L.J. Angew. Chem. Int. Ed., 2016, 55, 10737-10740. https://doi.org/10.1002/anie.201605309
Dynamic nanoproteins: self-assembled peptide surfaces on monolayer protected gold nanoparticles
Garcia Martin, S.; Prins, L.J. Chem. Commun., 2016, 52, 9387-9390. https://doi.org/10.1039/c6cc04786f
Catalytic signal amplification for the discrimination of ATP and ADP using functionalized gold nanoparticles
Pezzato, S.; Chen, J. L.-Y.; Galzerano, P.; Salvi, M.; Prins, L.J. Org. Biomol. Chem., 2016, 14, 6811-6820. https://doi.org/10.1039/c6ob00993j
Orthogonal sensing of small molecules using a modular nanoparticle-based assay
Neri, S.; Pinalli, R.; Dalcanale, E.; Prins, L.J. ChemNanoMat., 2016, 2, 489-493. https://doi.org/10.1002/cnma.201600075
Chiral nanozymes – Gold nanoparticle-based transphosphorylation catalysts capable of enantiomeric discrimination
Chen, J. L.-Y.; Pezzato, C.; Scrimin, P.; Prins, L.J. Chem. Eur. J., 2016, 22, 7028-7032. https://doi.org/10.1002/chem.201600853
Dissipative self-assembly of vesicular nanoreactors
Maiti, S.; Fortunati, I.; Ferrante, C.; Scrimin, P.; Prins, L.J. Nat. Chem., 2016, 8, 725-731. https://doi.org/10.1038/NCHEM.2511
2015
Transient signal generation in a self-assembled nanosystem fueled by ATP
Pezzato, C.; Prins, L.J. Nat. Commun., 2015, 6: 7790. https://doi.org/10.1038/ncomms8790
Monolayer protected gold nanoparticles with metal-ion binding sites: functional systems for chemosensing applications
Pezzato, C.; Maiti, S.; Chen, J. L.-Y.; Cazzolaro, C.; Gobbo, C.; Prins, L.J. Chem. Commun., 2015, 51, 9922-9931. https://doi.org/10.1039/c5cc00814j
Dynamic combinatorial chemistry on a monolayer protected gold nanoparticle
Maiti, S.; Prins, L.J. Chem. Commun., 2015, 51, 5714-5716. https://doi.org/10.1039/c5cc01127b
Label-free fluorescence detection of kinase activity using a gold nanoparticle based indicator displacement assay
Pezzato, C.; Zaramella, D.; Martinelli, M.; Pieters, G.; Pagano, M.; Prins, L.J. Org. Biomol. Chem., 2015, 13, 1198-1203. https://doi.org/10.1039/c4ob02052a
Selected publications from 1997 – 2014
Leonard Prins @ Google Scholar
Sensing through signal amplification
Scrimin, P.; Prins, L.J. Chem. Soc. Rev., 2011, 40, 4488-4505. https://doi.org/10.1039/c1cs15024c
Detection of enzyme activity through catalytic signal amplification with functionalized gold nanoparticles
Bonomi, R.; Cazzolaro, A.; Sansone, A.; Scrimin, P.; Prins, L.J. Angew. Chem. Int. Ed., 2011, 50, 2307-2312. https://doi.org/10.1002/anie.201007389
Catalytic self-assembled monolayers on Au nanoparticles: The source of catalysis of a transphosphorylation reaction
Zaupa, G.; Mora, C.; Bonomi, R.; Prins, L.J.; Scrimin, P. Chem. Eur. J., 2011, 17, 4879-4889. https://doi.org/10.1002/chem.201002590
Covalent capture: Merging covalent and noncovalent synthesis
Prins, L.J.; Scrimin, P. Angew. Chem. Int. Ed., 2009, 18, 2288-2306. https://doi.org/10.1002/anie.200803583
Origin of the dendritic effect in multivalent enzyme-like catalysts
Zaupa, G.; Scrimin, P.; Prins, L.J. J. Am. Chem. Soc., 2008, 130, 5699-5709. https://doi.org/10.1021/ja7113213
Exploiting neighbouring-group interactions for the self-selection of a catalytic unit
Gasparini, G.; Prins, L.J.; Scrimin, P. Angew. Chem. Int. Ed., 2008, 47, 2475-2479. https://doi.org/10.1002/anie.200703857
Amplification of chirality: The ‘sergeants and soldiers’ principle applied to dynamic hydrogen-bonded assemblies
Prins, L.J.; Timmerman, P.; Reinhoudt, D.N. J. Am. Chem. Soc., 2001, 123, 10153-10163. https://doi.org/10.1021/ja010610e
Noncovalent synthesis using hydrogen bonding
Prins, L.J.; Reinhoudt, D.N.; Timmerman, P. Angew. Chem. Int. Ed., 2001, 40, 2382-2426. https://10.1002/1521-3773(20010702)40:13<2382::AID-ANIE2382>3.0.CO;2-G
An enantiomerically pure hydrogen-bonded assembly
Prins, L.J.; De Jong, F.; Timmerman, P.; Reinhoudt, D.N. Nature, 2000, 408, 181-184. https://doi.org/10.1038/35041530
Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly
Prins, L.J.; Huskens, J.; De Jong, F.; Timmerman, P.; Reinhoudt, D.N. Nature, 1999, 398, 498-502. https://doi.org/10.1038/19053